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Toward a Wave-Function-Based Treatment of Metals: Extrapolation from Finite Clusters’
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High-level ab initio coupled-cluster results with up to quadruple-¢ basis sets are presented for small Be and
Mg clusters that are sections of the bulk lattice. It is shown that in combination with density functional
calculations these results allow for a reliable extrapolation toward the cohesive energy of the infinite solid.

1. Introduction

Whereas density functional (DFT) methods have easily found
their way from solid-state theory to molecular applications, the
transfer of wave-function-based quantum-chemical ab initio
methods to solid-state applications has been (and still is) rather
slow. One of the landmarks was the development of the
CRYSTAL code,' which allows for an efficient Hartree—Fock
(HF) treatment of solids using localized atomic-orbital-like (AO)
basis functions. The HF calculations rely on delocalized Bloch
functions adapted to translational symmetry. This is no longer
possible with post-HF methods: their high computational effort
requires a local treatment exploiting the nearsightedness of
dynamical electron correlation effects. A number of local
correlation schemes for solids featuring local excitations from
the HF reference wave function have been developed over the
years, among them the local ansatz,>* the method of increments,*®
and the CRYSCOR project.*’” These schemes have been
successfully applied to a variety of ionic crystals and covalently
bonded solids and have been shown to be capable of high
accuracy.® Especially useful is their application in cases where
current semilocal density functionals are of limited accuracy,
for example, for van der Waals bonded systems.’

However, the presence of well-localizable orbitals is a
precondition for the applicability of local correlation schemes,
and this makes their usefulness questionable for delocalized
systems such as metals. For metals, it is no longer possible to
generate well-localized Wannier orbitals by unitary transforma-
tion within the occupied HF space; the resulting orbitals are
only weakly localized at best, with an algebraic (instead of
exponential) decay. (See ref 10 and references therein.) To
overcome this difficulty, within the incremental scheme, it has
been suggested to base the incremental expansion on a well-
localizable model system rather than on the real metal and to
allow for delocalization (and the approach to the real metal)
only gradually within the various levels of the many-body
expansion. This way, it was possible to tackle group 2 and 12
metals successfully,''? but there were also cases where the
convergence of the many-body expansion was less than satisfac-
tory.!3 Within the local ansatz, the use of nonorthogonal orbitals
(e.g., AO) for generating local excitations is possible from the
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outset, and an application to metallic Li has been published,’
but the focus so far was on interatomic correlation effects
accessible within a minimal basis set.

Are there alternatives? Instead of approaching the infinite
metal starting from an artificial localized system, we may also
gradually approach it starting from finite metal clusters of
increasing size, which are readily accessible using standard
quantum-chemical correlation methods with decent basis sets.
For the transfer of information from the finite clusters to the
infinite solid, localization and convergence problems may be
avoided by replacing the incremental expansion by some other
kind of extrapolation scheme. Such schemes may be based on
the spatial extensions of the clusters. (See, e.g, refs 14 and 15.)
It is well known, for instance, that the cohesive energy of a
metal can be obtained by plotting the cluster binding energies
per particle over n~'"3, where n is the number of atoms in the
cluster. This works well, for example, for extrapolating DFT
cluster binding energies to the solid-state limit. (See, e.g., ref
14.) Unfortunately, the cluster size needed for a reliable
extrapolation is rather large, and this may be prohibitive for
the application of post-HF methods. Other schemes achieve a
more rapid convergence by combining high-level (e.g., MP2)
results for clusters with lower-level (e.g., DFT) results for
clusters and solid. (See, e.g., refs 16 and 17.) In the present
article, we look for an extrapolation scheme in the latter spirit
and apply it to the group 2 metals Be and Mg, with which we
can compare the results of the incremental scheme.'>!?

2. Cluster Results

Calculations have been performed for sections of the hex-
agonal close-packed (hcp) lattice of the Be and Mg crystals.
An ideal c/a value for the lattice constants was assumed for
simplicity with nearest-neighbor distances of 2.22 and 3.19 A
for Be and Mg, respectively. Clusters of type My, M3, My,
and Ms; have been considered, which can be characterized by
means of the number of atoms in consecutive ABAB planes as
follows: 1/3, 3/7/3, 7/12/7, and 7/12/19/12/7, respectively. The
correlation-consistent polarized valence n-tuple { (cc-pVnZ)
basis sets of Dunning and coworkers have been used," up to
quadruple- (cc-pVQZ) for My, up to triple-& (cc-pVTZ) for
M3, and with double-& (cc-pVDZ) for My and Ms;. Calcula-
tions have been performed at the HF, DFT, and coupled-cluster
(CC) levels. In the case of DFT, the local-density (LDA) and
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TABLE 1: Binding Energies Per Atom (Electronvolts) for
Be and Mg Cluster Sections of the hcp Lattice At Various
Theoretical Levels”
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TABLE 2: Extrapolation to the Bulk Cohesive Energy Per
Atom (Electronvolts) Using Different Pairs of Clusters, By
Means of Equation 1 (See the Text)”

HF LDA GGA CCSD CCSD(T) CCSDTQ HF LDA GGA CCSD(T)

Bey 0.388 1.429 1.232  0.555 0.715 0.743 Bes — Beys 1.71 4.09 3.49 2.65

0.403 1.458 1.258 0.831 1.75 4.15 3.55 2.93

0.411 1470 1.268 0.864 Bes — Bey 2.33 4.59 4.00 3.21
Beis 0816 2294 1967 1.128 1.346 Bes — Bes; 2.24 4.50 391

0.841 2.333  2.003 1.513 Be; — Beys 3.11 5.20 4.63 3.90
Beo 1.289 2.894 2516 1.649 1.872 Be; — Bes; 2.52 4.70 4.12
Bes; 1.478 3.232  2.806 Bey, — Bes; 2.11 4.36 3.78
Mg, —0.082 0476 0379 0095  0.180 0.202 Be.. 221 420 3.67

—0.079 0.483 0.380 0.250 Mg, — Mg)3 1.06 0.75 0.38

—0.077 0.476 0.379 0.273 1.07 0.75 0.56

Mg;;  —0.307 0.666 0.499 0.062 0.245 Mg, — Mgy 1.57 1.27 1.04
—0.299 0.675 0.499 0.352 Mg, — Mgs; 1.65 1.34

Mgy, —0.100 0984 0.793 0.333 0.579 Mg;; — Mg 2.21 1.92 1.86
Mgs;  —0.043  1.164 0.946 Mg;; — Mgs; 1.95 1.65
. . . . Mgy — Mgs; 1.77 1.46
“For each cluster, results with cc-pVDZ basis sets are given in Meg.. 0.36 176 1.48

the first row, followed by cc-pVTZ and cc-pVQZ results in the
following lines (if available).

generalized-gradient (GGA) approximations have been used,
with the PWO1 functional?®® for GGA. In the CC calculations,
single and double excitations as well as perturbative triples were
included (CCSD(T)); results without triples (CCSD) are also
given, for comparison. For My, additional CC calculations with
full triple and quadruple excitations (CCSDTQ) were possible
(cc-pVDZ basis). All calculations have been performed with
the MOLPRO ab initio suite of programs.?!”2 Results for
binding energies per atom are listed in Table 1.

As compared with the experimental cohesive energies per
atom of the solids, 3.41 eV for Be and 1.54 eV for Mg (values
from ref 26 corrected for zero-point energies),?’ the HF cluster
binding energies per atom are smaller for the Be clusters
considered by more than a factor of two and are even of the
wrong sign (i.e., repulsive) for the Mg ones. The very different
behavior of Be and Mg certainly has to do with the much more
effective sp hybridization in the case of Be.?® The LDA cluster
binding energies per atom, Ey, are in the range between 30 and
40% (My) and 75 and 95% (Ms;) of the experimental values.
The good agreement with the experimental solid-state values
for the larger clusters is certainly fortuitous because the E;, values
are still not converged with cluster size. In fact, the limiting
values for the solids are too large by 15—25%. (See Table 2.)
As usual, GGA reduces the tendency of LDA to overbind. The
crystal cohesive energies are within 10% of the experimental
results. The Ey, values of the smaller clusters are significantly
too large, as compared with CCSD(T). The overestimation is
47 and 32% for Be4 and Be,; with cc-pVQZ and cc-pVTZ basis
sets respectively; the corresponding numbers for Mg, and Mg;3
are 39 and 42%. The CCSD(T) binding energies are certainly
the most accurate ones but (as usual) are also most sensitive to
basis set effects. With respect to the cc-pVQZ basis, we have
an underestimation of 17% with cc-pVDZ and of 4% with cc-
pVTZ for Bey; the corresponding numbers for Mg, are even
larger (34% with cc-pVDZ, 8% with cc-pVTZ) because of the
fact that binding here is a pure correlation effect. Also, the
influence of triples is substantial, and again, the effect is larger
for Mg than for Be: CCSD underestimates by 22 and 12% for
Bey and Bey, respectively, and by 47/43% for Mgs/Mgye (cc-
pVDZ basis). The strong effect of triples is not unexpected in
view of the sp near-degeneracies of the group 2 clusters; the T,
diagnostics,” which indicate the degree of multireference
character of the wave function, are between 0.030 and 0.037

¢ Extrapolation has been done at various theoretical levels using
cc-pVDZ basis sets with the exception of the second line where
cc-pVTZ basis sets were used. Values for Be., from ref 13 and for
Mg.. from refs 27 and 30. Experimental values are 3.41 and 1.54
eV for Be and Mg, respectively.?%?’

for Be (cc-pVDZ basis) and between 0.019 and 0.049 for Mg,
increasing with cluster size. For the My clusters, we could check
the influence of higher substitutions in the CC hierarchy.
Including full triple and quadruple excitations (CCSDTQ) leads
to an increase in E, by 4% for Be and by 12% for Mg. As
compared with the experimental cohesive energies, the CCSD(T)
values of Ej are in the range of 20—25% (for Mg,, Bey, cc-
pVQZ) and 40—55% (for Mgys, Bey, cc-pVDZ). The latter
values are certainly too low because of the small basis applied
(by ~20—30%), but there is still a significant difference of
~20—30% between the largest cluster for which we could afford
CCSD(T) calculations (M) and the bulk.

3. Extrapolation by Cluster Size

One may argue that the cluster binding energies contain
volume-dependent terms proportional to the number of atoms,
n, as well as surface-dependent terms, ~n*3. Therefore

E,=a+bn" 1)

Using two different clusters, we can determine a and b, a
being an estimate for the bulk cohesive energy. Results from
extrapolations for various pairs of Be and Mg clusters are
collected in Table 2 together with bulk cohesive energies (HF,
LDA, GGA, and experimental values taken from literature).

It is seen that the extrapolated values are rather sensitive to
the size of the clusters used for extrapolation as long as these
clusters are small (M4, M;3). However, the DFT values
extrapolated from the two largest clusters, that is, My and Ms,
are already quite close to the corresponding values for the
infinite solids. Differences are on the order of 0.1 eV for Be
and even smaller for Mg. These differences can be partially
rationalized with the different basis sets used for the clusters
and the infinite solid. (As shown from the extrapolation from
M, and M;; with two different basis sets (cc-pVDZ and cc-
pVTZ), basis-set effects are on the order of 0.05 eV for Be.)
For the HF cohesive energy of Be extrapolated from Be,s and
Bes;, we also have a small difference of 0.1 eV to the periodic
calculation (although of different sign with respect to that of
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the DFT case), whereas an extrapolation from the repulsive HF
cluster binding energies of Mg was not attempted here.

Turning now to the extrapolation of the CCSD(T) results,
the largest pair of clusters that can be used for this purpose is
M3 and Mye. (It has already been mentioned that we could not
obtain CCSD(T) results for Ms; because of technical difficulties
arising from the size of the system.) Unfortunately, the M
cluster is not well suited for extrapolations, as shown by the
overestimation of the DFT results extracted from M3 and Mag;
the results are too large by ~1.0 eV for Be and ~0.5 eV for
Mg. The reason is probably related to an unusually low Ej, value
of M3, which is corroborated by an underestimation of the
cohesive energy when extrapolated from M, and M;5. The DFT
extrapolations from M, to M, come closer to the values from
periodic calculations, with deviations of +0.3 to +0.4 eV for
Be and —0.2 eV for Mg. Using the same clusters for extrapolat-
ing the CCSD(T) values, we get cohesive energies of 3.21 eV
for Be and 1.04 eV for Mg, which have to be compared with
experimental values of 3.41 and 1.54 eV, respectively. Basis-
set deficiencies of the calculations for My and My (cc-pVDZ
basis) can be estimated from corresponding ones for M, and
M,; (comparing cc-pVDZ and cc-pVTZ results) to be around
0.3 to 0.4 eV for Be and 0.2 to 0.3 eV for Mg. Taking these
effects into account, we would overestimate the experimental
cohesive energy of Be by 0.1 to 0.2 eV, whereas for Mg, we
would obtain a value too small by 0.2 to 0.3 eV. The remaining
errors are consistent, both in sign and in magnitude, to the finite-
size errors at the DFT level that were previously discussed. Still,
it is somewhat unsatisfactory that we cannot come with our
CCSD(T) calculations into a range where the extrapolated values
would be independent of cluster size.

4. Extrapolation by HF—DFT Mixing

When we want to extrapolate cluster binding energies per
atom, £}, to the bulk limit, we can make use of the fact that we
only need an extrapolation for the correlation part of Ey, Ef°™,
because HF results for the crystal limit are already available.
But this is not the only piece of information: we also have both
cluster and crystal DFT results at our disposal, which presum-
ably incorporate at least part of the correlation effects in
question. Therefore, we can assume an approximate propor-
tionality

AES™(n) = cmIAE," (n) — AE, ()],
AEY(n) = Ey(«0) — Ex(n) (2)

and it seems natural to calibrate the proportionality factor c(n)
from the comparison of wave-function-based and DFT results
of cluster calculations

Ebcorr(n)

=— 3
c(n) B — B (3)

In effect, this leads to the following estimate of Ey(co)
Ef) = (1 = cEy (=) + cE) (=) &)

that is, to a HF-DFT hybrid expression, where the HF mixing
ratio c(n) is chosen in such a way that the formula, when applied
to the finite cluster, reproduces the wave-function-based post-
HF results for Ey(n). The hope is that the mixing ratio c(n) will
approach c(eo) faster than the Ey(n) will.

Note that this scheme is similar (but not identical) to that
suggested in refs 16 and 17. It has the merit that it does not
simply add a DFT correction for the part missing in the post-
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TABLE 3: Extrapolation to the Bulk Cohesive Energy Per
Atom (Electronvolts) by Means of Equation 4 on the Basis of
Cluster Data at Various Theoretical Levels”

cluster calculation extrapolation by

method basis set LDA GGA

Bey CCSD cc-pVDZ 2.53 2.50
CCSD(T) cc-pVDZ 2.84 2.78

CCSDTQ cc-pVDZ 2.88 2.82

CCSD(T) cc-pVTZ 3.02 2.94

CCSD(T) cc-pVQZ 3.06 2.98

Beys CCSD cc-pVDZ 2.63 2.60
CCSD(T) cc-pVDZ 2.92 2.88

CCSD(T) cc-pVTZ 3.11 3.05

Bey CCSD cc-pVDZ 2.66 2.64
CCSD(T) cc-pVDZ 2.93 2.90

Mg, CCSD cc-pVDZ 0.80 0.79
CCSD(T) cc-pVDZ 1.02 1.00

CCSDTQ cc-pVDZ 1.07 1.05

CCSD(T) cc-pVTZ 1.18 1.16

CCSD(T) cc-pvVQZ 1.25 1.22

Mgi; CCSD cc-pVDZ 0.89 0.87
CCSD(T) cc-pVDZ 1.15 1.13

CCSD(T) cc-pVTZ 1.30 1.27

Mg CCSD cc-pVDZ 0.92 0.90
CCSD(T) cc-pVDZ 1.24 1.21

@ HF and DFT bulk data used in eq 4 are: Eff = 2.21 (0.36) eV,
ELPA = 4.20 (1.76) eV, EFSA = 3.67 (1.48) eV for Be (Mg).'3?"30
Experimental values are 3.41 and 1.54 eV for Be and Mg,
respectively.??’

HF calculations, but at the same time, it uses the latter ones for
a scaling of the density functional. Therefore, the scheme should
also be applicable in cases (and for functionals) where standard
DFT is less successful.

Table 3 presents results obtained with this kind of extrapola-
tion, using various cluster sizes, n, for extracting c(n) and
applying either LDA or GGA E,, values in eq 4. Also, CCSD(T)
correlation energies obtained with the cc-pVDZ basis for c(n)
in eq 3 are supplemented by CCSD and CCSDTQ energies and
by values with larger basis sets, if available for a given n.

It is seen that the results are quite insensitive to the density
functional used for extrapolation. Differences between LDA and
GGA are <0.03 eV for Mg and <0.08 eV for Be for all cluster
sizes n = 4. This is much smaller than the difference between
the raw LDA and GGA data. (See Tables 1 and 2.) Of course,
in the limit n — oo, the values should become independent
anyway on whether LDA or GGA was used for extrapolation.

With respect to the cluster size dependence, we see that
changes are moderate: differences between values extrapolated
from n = 4 and 26 are ~0.1 eV for Be and ~0.2 eV for Mg.
Also, the n = 13 values are not exceptional any more: they lie
in between the n = 4 and 26 values. Therefore, the sensitivity
of the extrapolated data to the cluster size is much more
favorable than for those described in the previous paragraph.

The effect of triples in Ef°"(n) for calibrating c(n) in eq 3
turns out to be significant: without the triples, the calculated
cohesive energies deteriorate by 0.2 to 0.3 eV. Inclusion of full
triples and quadruples, on the other hand, enhances them by
~0.05 eV. About equally as important as triple excitations are
basis-set effects: replacing cc-pVDZ by cc-pVTZ leads to an
increase in the cohesive energy E., by 0.15 to 0.20 eV for Be
and of ~0.15 eV for Mg, whereas going to cc-pVQZ enhances
E.on by another ~0.05 eV.

In comparison to the experimental cohesive energies, that is,
3.41 eV for Be and 1.54 eV for Mg, our CCSD(T)/GGA values
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TABLE 4: Final Estimates of Bulk Cohesive Energies Per
Atom (Electronvolts) Using the Extrapolated Values of
Table 3¢

Be Mg
CCSD(T)/GGA 2.90 1.21
+ basis-set corrections 3.15 1.47
+ higher excitations 3.19 1.52
exptl 341 1.54

4 CCSD(T)/GGA values are taken from n = 26, basis-set
corrections are taken from n = 13 and n = 4 (see text), and the
effect of higher excitations is taken from n = 4. Experimental
values (exptl) are taken from refs 26 and 27.

extracted from n = 26 (2.90 eV for Be, 1.21 eV for Mg) are
too small by 0.5 and 0.3 eV, respectively. (See Table 4.) Adding
the cc-pVDZ — cc-pVTZ basis effect from n = 13, the
deviations from experiment are reduced to 0.3 and 0.2 eV,
respectively. Further reductions by basis-set improvement
toward the basis-set limit can be estimated from the n = 4 data
to 0.1 eV (twice the cc-pVTZ — cc-pVQZ effect), and another
0.05 eV can be expected from the effect of higher excitations
(also extracted from n = 4). A rough estimate of the cluster-
size effect beyond n = 26 is also on the order of 0.1 eV. This
would bring the extrapolated cohesive energies to within 0.1
eV of the experimental values.

This is a significantly more uniform accuracy than that
reached with the incremental scheme for Be and Mg. There,
values of 4.66 and 1.53 eV were obtained;'>!? that is, the
difference to experiment was 0.01 eV for Mg but 1.25 eV for
Be. (Improvement is possible for Be but at the expense of
calculating a large number of higher-order terms.3') The
accuracy reached with the CCSD(T)/LDA and CCSD(T)/GGA
extrapolations can also be compared with that obtained with
standard LDA and GGA calculations for the infinite crystal.
There, the deviations from experiment are 0.8 eV for Be and
0.2 eV for Mg (LDA), and the corresponding GGA deviations
are 0.3 and —0.06 eV, respectively.

5. Conclusions

A hybrid Hartree—Fock/density-functional scheme has been
used for extrapolating CCSD(T) binding energies per atom, Ej,
for Be and Mg clusters to the bulk limit. It turns out that the
results obtained are only weakly dependent on the cluster size
used for extracting the CCSD(T) E, values. However, the
inclusion of triple excitations in CCSD(T) and the use of
extended basis sets are instrumental for reaching agreement to

Stoll

0.1 to 0.2 eV with the experimental cohesive energies of the
Mg and Be metals.
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